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A B S T R A C T   

Climate change and increasing urbanization have worsened urban floods and other water problems, and it is 
generally accepted that the optimization of the spatial layout of low impact development (LID) practices is a 
promising solution. Existing studies have focused on coupling the hydrological model with optimization 
methods, but little is known about the effects of the spatial discretization of the model on the optimization re-
sults. In this study, the scale effects were examined in a case study in Guangzhou, China. Four models at various 
spatial discretization levels, namely models R1, R2, R3, and R4, with an average unit size of 0.022*104, 
0.405*104, 2.43*104, and 4.865*104 m2, respectively, were constructed to investigate the performance differ-
ence caused by delineation scales. The results show that the highest-resolution model R1 (one unit represented 
one type of land cover) provides more cost-effective layout schemes, but during a heavy rainstorm, the solution 
set provided by a coarser model are very similar to that generated by the finest model R1. A coarser model can 
provide wider solution sets, but most of these schemes overshadow some types of LID practices such rain garden 
and bio-retention cell, which also have a critical role in urban heat mitigation, air quality improvement, and so 
on. Due to the cumbersome work of catchment subdividing and time-consuming optimization process, a coarse 
model would be a good substitute to a large area. These findings provide new insights on how to achieve better 
performance by subdividing the catchment at a proper scale when optimizing the spatial layout of LID practices.   

1. Introduction 

Rapid urbanization not only alters the natural hydrologic cycle, but 
also changes the surface conditions, for example, replacing vegetation 
with anthropogenic materials such as concrete, asphalt, brickwork, and 
metal (Jacobson, 2011). These impermeable materials hinder water 
infiltration into the soil, increase the formation of runoff and the po-
tential for flooding, and worsen the contamination of water runoff 
(Bonneau et al., 2017; Li et al., 2020). Meanwhile, it is projected that the 
impact of global warming will be more severe on urban areas, resulting 
in more frequent and intense extreme rainfall events (Lai et al., 2020; 
Javadinejad et al., 2021; Ostad-Ali-Askari et al., 2020; Papalexiou and 
Montanari, 2019; Yilmaz et al., 2014; Zhang, 2020), which will further 
complicate urban water management (Marlow et al., 2013). 

Traditional centralized measures have the strength of removing more 
surface runoff rapidly than nature-based solutions, but the construction 

and renovation work of grey infrastructures are high-priced and it is 
difficult to offer multiple-benefits, such as pollution load degradation, 
heat-down, biodiversity and urban amenity (Alves et al., 2019). As such, 
nature-based strategies have gradually been implemented in many 
countries, such as Low Impact Development (LID) in the USA, the Sus-
tainable Urban Drainage System (SUDS) in the UK, Water Sensitive 
Urban Design (WSUD) in Australia, and Sponge City in China (Fletcher 
et al., 2015). These solutions have appellations but share the same goal, 
that is, to recover or mimic the natural water cycle in urban areas 
through nature-based technologies (Chan et al., 2018). One of the most 
widely used solutions is LID practices, which includes green roofs, rain 
gardens, vegetative swales, and porous pavements (Dietz, 2007). 

Considering their multiple benefits, policymakers prefer LID mea-
sures to control surface runoff at its source and mitigate the impacts of 
urbanization. The variety of LID facilities is considered to be limited 
(Dietz, 2007), while the number of possible spatial combinations is 
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deemed to be unlimited. Furthermore, the budget constraints increase 
the complexity of the selection and placement of LID facilities, as it is 
expected to achieve higher level of runoff reduction at lower cost. There 
is an urgent need to seek cost-effective LID layout schemes by balancing 
conflicting hydrological goal and economic concern (Chui et al., 2016; 
Kuller et al., 2017; Zhang and Chui, 2018). The exhaustive approach is 
unlikely to identify the optimal spatial layout for it will take a very long 
time in most cases to achieve convergence. Instead, with advancements 
in computational abilities, simulation–optimization approaches 
emerged and multi-objective optimization algorithms (MOOAs) have 
been widely used to identify the optimal solution set with several 
competing objectives (Damodaram and Zechman, 2013; Deb, 2014; 
Gunantara, 2018; Javadinejad et al., 2019; Ostad-Ali-Askari et al., 
2017). Presently, these MOOAs have been successfully coupled with 
hydrologic/hydraulic models to optimize LID spatial layouts (Islam 
et al., 2021; Pour et al., 2020). A classic case is the application of the 
System for Urban Stormwater Treatment and Integration (SUSTAIN) 
embedded in ArcGIS with general applicability for providing cost- 
efficient planning schemes under defined constraints (Jia et al., 2015; 
Lai et al., 2007; Lee et al., 2012; Mao et al., 2017). The essence of this 
model is the coupling between the Storm Water Management Model 
(SWMM)/hydrologic simulation program-FORTRAN (HSPF) and the 
Non-Dominated Sorting Genetic Algorithm (NSGA-II) (Lee et al., 2012). 
However, one inescapable limitation for utilizing this model is that 
when it is applied in a large region with complicated pipe networks, its 
computational burden may be enormous, easily resulting in a program 
crash. To cope with this deficiency, many researchers have attempted to 
embed hydrological models into the MOOA framework by coding ac-
cording to their own research needs. For example, analogous to SUS-
TAIN, the linking of SWMM and NSGA-II was widely applied (Xu et al., 
2017; Oraei Zare et al., 2012; Zhang et al., 2013; Zeng et al., 2020). 
Furthermore, other algorithms combined with hydrological models have 
been developed to improve the optimization performance. For example, 
analogous to SUSTAIN, the linking of SWMM and NSGA-II was widely 
applied (Xu et al., 2017; Oraei Zare et al., 2012; Zhang et al., 2013; Zeng 
et al., 2020). Furthermore, other algorithms combined with hydrologi-
cal models have been developed to improve the optimization perfor-
mance. For instance, the Long-Term Hydrologic Impact Assessment-Low 
Impact Development 2.1 (L-THIA-LID 2.1) model was coupled with a 
multi-algorithm genetically-adaptive multi-objective approach (Liu 
et al., 2016); the SWMM was linked to the multi-objective antlion 
optimization algorithm (Mani et al., 2019), the modified particle swarm 
optimization algorithm (Duan et al., 2016, Li et al., 2019), the multi- 
objective shuffled frog leaping algorithm (Liu et al., 2019), marginal- 
cost-based greedy strategy (Xu et al., 2018), or the third Evolution 
Step of Generalized Differential Evolution (GDE3) (Li et al., 2022). 

When it comes to the optimization of LID layout configuration, most 
researchers have highlighted the effects of different MOOAs on the 
optimization performance and conducted them at coarse scale, without 
considering the impact of modelling resolution. It is well known that 
SWMM is often applied to simulate the hydrological effects of LID fa-
cilities (Elliott and Trowsdale, 2007; Qin et al., 2013; Wu et al., 2017; 
Yazdi et al., 2019). The basic computing units of the runoff component 
of SWMM are usually the smaller sub-catchments divided from the study 
area, and the main principle of the subdivision is the spatial variabilities 
of the landscape such as the distribution of land use types, slopes, and 
drainage features (Gironás et al., 2010; Rossman and Huber, 2015). 
Sometimes, there is no uniform standard for the delineation of sub- 
catchments, and they are mainly determined by modelers so that the 
scale may be coarse or fine. The uncertainty due to the spatial dis-
cretization may affect the surface runoff calculation and the LID layout 
optimization. Many studies have examined the difference in output from 
SWMM at various spatial scales, defined here as the resolution of the 
sub-catchments. In terms of the smaller catchments, it was found that 
the runoff volumes are relatively insensitive to the spatial resolution 
(Goldstein et al., 2016; Shaneyfelt et al., 2021; Zeng et al., 2022). For 

larger watersheds, Sun et al. (2014) observed that the model parameters 
calibrated based on a fine discretization diminished the uncertainty of 
the overflow forecasts compared to those of the coarse delineation, and 
Chang et al. (2019) found that the coarsening of the scale led to a 
decrease in the total and peak runoff. Similarly, the modeling scale may 
impact the optimization process of the spatial allocation of LID practices, 
as the decision variables change with the spatial discretization methods. 
As LID devices are usually scattered across various sites to mitigate 
runoff, a fine scale, primarily that a sub-catchment only represents one 
type of land cover (Rossman, 2010), can reduce the uncertainty of the 
runoff reduction effects between the actual engineering design and the 
model output. It is also helpful for the translation of the optimization 
results into practical measures (Randall et al., 2019), but modeling at 
finer scales (flat/pitched rooftop, pavements, parking lot, etc.) involves 
cumbersome work in subdividing, data processing and computation 
(Chang et al., 2019). Accordingly, the scale issue of the LID layout 
optimization is a crucial problem in the acquisition of an ideal solution. 
However, as discussed earlier, previous studies conducted by simu-
lation–optimization approaches mostly employed a coarser model sub-
division, that is, lumping diverse land use types into single sub- 
catchment for simplification, to alleviate the computation burden in 
the optimization process. Exceptionally, Randall et al. (2019) sub-
divided the study area into 85,937 sub-catchments by each separate land 
cover polygons for the convenience of LID allocation, but this study 
merely examined the hydrological effects under four different LID model 
scenarios. Bach et al., (2013) quantified the impact of block size on the 
selection of decentralised stormwater management options using a 
planning algorithm instead of hydrological simulation. To the best of our 
knowledge, there is no peer-reviewed literature that investigates the 
impact of the modeling resolution on the hydrological performance of 
spatial configurations of LID practices optimized by MOOA. 

To bridge the research gap described above, this study aims to 
explore how the optimal cost-effective curves (i.e., the distribution be-
tween investment and runoff reduction rate) change with the scale of the 
model subdivision under various rainfall conditions. As such, SWMM 
was selected for modeling at four spatial discretization levels, and then 
coupled with the GDE3. Finally, we ran them under three design storms 
with return periods of 0.5, 5, and 20 years. By understanding the 
modeling scale effects, the findings of this study can provide guidance to 
modelers and planners hoping to achieve a more cost-effective LID 
layout, which can reduce more runoff at a lower cost. 

2. Materials and methods 

2.1. Study area and data source 

The Changban Industrial Campus (CIC) in Guangzhou city (23◦8′N, 
113◦16′E), southern China, with a total area of 9.7 ha (Fig. 1), was 
selected as the study area. The area was affected by the subtropical 
monsoon, and the annual average precipitation was more than 1720 
mm, with heavy rainfall events occurring commonly (Chen et al., 2021). 
There is a mountain outside the study area, which is located to the north 
of the study area (Li et al., 2022), and its runoff formation process is 
rapid and rich during periods of intense rainfall. Furthermore, the CIC is 
located at a low-lying region with massive impervious surface where 
large runoff volumes would easily accumulate, and the load of rainwater 
was prone to exceed the drainage capacity.This highly urbanized area 
featured commercial buildings with flat or pitched roofs, roads, parking 
lots, and unexplored territories. As such, this area was prone to flooding 
due to the synthetic action of substantial rainfall, significant inflow 
runoff, low-lying terrain, high impervious rate, and low drainage ca-
pacity. For example, on 10 May 2016, a heavy rain hit this area, causing 
severe flooding, destroying the neighboring subway station, several 
roadway sections, and some low-rise buildings, and causing extensive 
property damage. Therefore, response options and mitigation measures 
for reducing the loss caused by flooding is urgently needed in the CIC. 
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Considering the vulnerability of such areas to flooding, the current land- 
use type, the existing building layout, and the topography, it is impor-
tant to adopt the LID layout optimization to such areas to lessen the load 
of rainwater. 

The data required for modeling included the land-use type, as well as 
a digital elevation model (DEM) with a resolution of 5 m and a drainage 
network layer lastly updated in 2010, all of which came from the local 
Land and Resources Bureau and Water Supplies Bureau. An automatic 
rain gauge and a flow meter were installed at the outfall of the water-
shed (see Fig. 1) to record rainfall and runoff processes for calibration 
and validation of the SWMM model. 

2.2. Overview and scenarios 

In this study, we developed four SWMM models with sub-catchments 
delineated at four different spatial resolutions, including a high- 
resolution model (R1) and three progressively coarser low-resolution 
models (R2, R3, and R4). The storm events with return periods of 0.5, 
5, and 20 years were also input into each model as the rainfall series, 
respectively. Thereafter, inspired by Li et al., (2022) who pointed out 
that the Third Evolution Step of Generalized Differential Evolution 
(GDE3) performs better, these models with various rainfall events and 
discretization scales were embedded to GDE3 (Kukkonen and Lampinen, 
2005; Zelinka et al., 2012) to optimize the LID layout. Finally, the data 
was evolved for 200 and 500 generations, respectively. The straight-
forward coupling method and the optimization procedure are shown in 
Fig. 2. 

2.3. SWMM model 

2.3.1. Model setup at four resolutions 
The US EPA Storm Water Management Model (SWMM), composed of 

runoff and routing modules, has been widely used for dynamic rainfall- 
runoff simulations in urban areas. There is a LID control module for 
evaluating the effects of LID practices on runoff reduction (Rosa et al., 
2015). As such, we selected the SWMM to carry out the LID layout 
optimization and eight types of commonly used LID techniques, 
including the rain barrel, green roof, rooftop disconnection, bio- 
retention cell, rain garden, porous pavement, infiltration trench, and 
vegetated swale. One-for-many and one-for-one methods were used to 
deploy the LID control (Rossman, 2010). The one-for-many method as-
signs one or more controls to an existing sub-catchment, and the LID 
practices act in parallel under this option. The one-for-one method oc-
cupies the whole sub-catchment by one type of the LID control and it 
also allows series connection of LID practices in diverse sub-catchments. 
Shoemaker et al. (2009) has proved that the differences in the simula-
tion results between the distributed and aggregated LIDs were extremely 
smaller if the area of sub-catchment less than 1.035*106 m2. As the total 
area of the study area is only 9.7 ha, the impact of the connection 
method of LID measures on its efficacy can be neglected. The selection of 
method mainly depended on the delineation approach of the sub- 
catchments. When we subdivided the study area at a fine scale with 
each sub-catchment representing one land-use type, the one-for-one 
method was suitable for allocating LID practices. Conversely, a sub- 
catchment delineated at a coarse scale was always comprised of multi-
ple land-use types, which suited the one-for-many method to place the 
LID facilities. It is worth noting that the decision variables of MOOA, 

Fig. 1. Location and boundaries of the study area, pipe network and satellite image.  

Fig. 2. Flowchart of the coupling between GDE3 and SWMM models with different resolutions (R1, R2, R3 and R4).  
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which were defined as the number/area of each type of LID facility in 
each sub-catchment, as well as their constraints varied with partitioning 
methods, and the distribution of the optimal solution sets changed 
accordingly. Thus, we developed four versions of SWMM model at 
different spatial resolution levels, namely, models R1, R2, R3 and R4 
(from fine to coarse scale), to investigate the impacts of spatial scale on 
the allocation optimization of LID practice. 

There are two common approaches applied in the urban sub- 
catchments delineation: geometric method based on nodes and artifi-
cial subdivision (Huang and Jin, 2019). The former one automatically 
generates sub-catchments from the manholes of the urban drainage 
network by Voronoi (Thiessen polygon). It is time-saving but imprac-
tical, for example, a building may be divided into two different sub- 
catchments. The latter one involves a manual sub-catchment delinea-
tion with a comprehensive consideration of the distribution of land 
cover, elevation, and pipeline network, which is time-consuming but 
more realistic. As such, we selected the latter method to carry out the 
subdivision of sub-catchments, and finely divided model R1 into 436 
sub-catchments at the microscale according to landscape architects’ 
space requirements and design specifications (Bach et al., 2018). As 
shown in Fig. 3a, one unit in model R1 always represented a specific 
land-use type, and the one-for-one method was used to deploy the LID 
practices spatially. Table S1 (supplementary material) shows the types 
of LID practices suitable for the specified land cover, and a final list of 
suitable LID types for each unit would be determined following the field 
study. Based on the discretization of model R1, these micro sub- 
catchments were merged into 24 medium sub-catchments to form 
model R2, which were then combined into four large sub-catchments to 
shape model R3, and were integrated into two larger sub-catchments to 
structure model R4 (Fig. 3b). As the sub-catchments in models R2, R3 
and R4 always consisted of diverse land-use types, the one-for-many 
method was the best choice for deploying the LID controls in SWMM. 
The suitable types of LID practices for each sub-catchment were sum-
marized based on those in model R1. The spatial scales of these four 
models are different, but they have the same pipe network system that is 
comprised of 169 junctions, one outfall, and 167 conduits (Fig. 1). The 
flow direction of each sub-catchment was assigned to a manhole located 
in the main drainage channel or near the outlet of the sub-catchment. 

2.3.2. Design storms 
This study also considered the effects of the various rainfall condi-

tions on the layout optimization of the LID practices. As LID practices are 
always designed to resist a low return period storm event, and the effi-
ciency of LID practices decreased significantly when the return period of 
the design storm is greater than 20 years (Mei et al., 2018), three rainfall 
events with 0.5-, 5-, 20-yr return periods were selected to simulate the 
hydrological performance. According to Intensity-Duration-Frequency 
(IDF) relationships in Guangzhou, the basic formula of rainfall in-
tensities could be described by formula (1). Based on formula (1), the 
rainfall intensities of a two-hour duration and the return period of 1 in 
0.5, 5, and 20 years were selected to simulate the probable flooding 
situations, as summarized in Table 1. 

q =
167A

(t + b)n (1)  

where q is the rainfall intensity, t is the rainfall duration, andA,b, and n 
are the constants determined by the location of the research region and 
the return period of the rainfall. 

We selected the rainfall pattern with unimodal shapes (middle peak) 
(Keifer and Chu, 1957; Marsalek and Watt, 1984), which is widely 
applied in current engineering practices, to distribute the rainfall in-
tensity temporally (Liu et al., 2015). The time-to-peak ratio could be 
expressed asr = tp/td, where tp is the time before the peak value, and td is 
the duration of total rainfall. The value r is an essential parameter in 
design storms, and it is empirically fixed at 0.48 in Guangzhou according 
to historical storms. The temporal resolution is 1 min, and the equations 
of the design storm could be expressed as formula (2): 

)b()a(

Fig. 3. (a) The distribution of land type, and (b) different catchment delineation of the study area (Sub-catchments with green borders constitute model R1, sub- 
catchments with orange borders constitute model R2, sub-catchments with grey violet borders constitute model R3, and sub-catchments with royal pink borders 
constitute model R4.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
The formula of rainfall intensities under various return periods.  

Return period Formula 
167*A / (t + b)n 

0.5 167*39.29 / (t + 16.812)0.911 

5 167*32.406 / (t + 12.874)0.758 

20 167*24.917 / (t + 8.406)0.653  
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it =
A

(τ
ρ + b)n (1 −

nτ
τ + ρb

) (2)  

where τ = tp − t and ρ = r fort⩽tP, 
τ = t − tP and ρ = 1 − r fort > tP, 
it is the rainfall intensity at timet, and the constantsA,b, and n 

correspond to the constantsA,b, and n in formula (1), which differ with 
the various return periods (Table 1). 

2.3.3. Calibration and validation 
There are two types of parameters, namely, measured and empirical 

parameters, in the SWMM model. The measured parameters are the 
area, width, slope, and impervious percentage of each unit, and they are 
determined by the topography and land cover type. In this case, the area 
and slope were calculated automatically in ArcGIS, the width of the sub- 
catchment was calculated by taking the square root of the sub- 
catchment area, assuming each sub-catchment to be square in shape 
(Bisht et al., 2016), and the impervious percentage was computed based 
on the distribution of land use. As the sub-catchments in model R1 had 
the highest resolution, the impervious percentage of model R1 could be 
determined quickly and accurately, and the impervious percentages of 
models R2, R3 and R4 were calculated based on that of model R1. The 
invert elevation and the maximum depth of each junction were other 
measured parameters that were extracted from the municipal pipe 
network database. As for the empirical parameters, the Manning value of 
the surface, the storage depth, and the Horton-based infiltration in-
dicators were initially established by referring to the adjacent catchment 
area (Chen et al., 2018; Zeng et al., 2019) and the SWMM manual 
(Rossman and Huber, 2015). The recommended ranges and values of 
calibrated parameters for SWMM are shown in Table S2. The infiltration 
rate is very important in model calibration as the soil in Guangzhou is 
relatively moist during the rainy season (from June to October). 
Consequently, the Manning value, the depth of depression storage on 
impervious/pervious area and maximum/minimum infiltration rate 
within the recommended ranges of parameters were adjusted to improve 
the model accuracy. Generally, one parameter was modified at a time 
when other parameters were fixed, and we repeated this process until 
the requirements of NSE values were met. As the model was well cali-
brated after these steps, it was not necessary to adjust the characteristics 
width. 

The observed rainfall event from 2:10 of Jun 7 to 19:55 of Jun 8 in 
2018 was used to calibrated model R3, and then another measured 
event, from 12:25 of Aug 28 to 5:35 of Aug 29 in 2018, was applied to 
validate. The Nash-Sutcliffe Efficiency (NSE) value was greater than 0.7 
for both calibration and validation periods, and it is generally acceptable 

of NSE greater than 0.5 (Moriasi et al., 2007; Nash and Sutcliffe, 1970). 
The shape and timing of the simulated hydrograph showed good 
agreement with the observed data, with very slight differences at the 
peaks, as shown in Fig. 4. Next, the validated parameter values of the 
low-resolution model R3 were used to calibrate and validate the model 
R1, R2 and R4. It was found that the simulated hydrographs of models 
R1, R2 and R4 almost coincided with that of model R3 (Fig. 4), and all 
NSE values were greater than 0.7 (Table 2). This indicates that the level 
of sub-catchment discretization has little impact on the overall model 
performance, which is supported by previous studies on the scale effects 
(Shaneyfelt et al., 2021;Goldstein et al., 2016; Ghosh and Hellweger, 
2012). As such, models with various spatial resolutions perform well in 
the hydrological simulation, and they can be considered for further 
study in scale effects. 

The calibration parameter values were set as follows: the Manning’s 
value and depression storage’s depth of the impervious area were 0.011 
and 0.5 mm, and those of the pervious parts were 0.24 and 1 mm, 
respectively; the maximum and minimum infiltration rates were 10 
mm/h and 1.25 mm/h, respectively, and the decay constant value was 4; 
and Manning’s value of the channel was between 0.01 and 0.01. 

2.4. Multi-objective optimization algorithm – GDE3 

2.4.1. Definition of optimization problem 
In this study, we adopted the GDE3 to investigate the scale effect on 

the distribution of the optimal solution sets of the LID layout. The multi- 
objective optimization problem (Deb, 2014) considered here consisted 
of finding a set of decision variables x =(x1,x2, ...,xn), corresponding to 
the number/area of each LID practice type in each sub-catchment, which 
minimized the total annual budget f1(x) and maximized the runoff 
reduction ratef2(x), expressed as formula (3). Improvements in hydro-
logical performance always result in increased investment, so the 
optimal solution does not exist and the MOOA is always employed to 
balance these conflicting goals to get a set of optimal solutions. 

min f1(x) =
∑m

j=1

(
A1j + A2j

)
and max f2(x) =

Runof fbaseline − RunoffLID

Runof fbaseline 

(a)                                      (b) 

Fig. 4. Hydrographs comparing of models with different resolutions. (a) Rainfall event from 2:10 of Jun 7 to 19:55 of Jun 8 in 2018 for calibration; (b) rainfall event 
from 12:25 of Aug 28 to 5:35 of Aug 29 in 2018 for validation. 

Table 2 
Nash-Sutcliffe efficiency (NSE) metrics for different models.    

Model R1 Model R2 Model R3 Model R4 

Calibration Jun 7, 2018  0.725  0.735  0.73  0.737 
Validation Aug 28, 2018  0.767  0.763  0.763  0.789  
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where A1j and A2j are the annualized construction cost and the annual 
maintenance cost (Huang et al., 2018) of the LID practicej, respectively; 
m is the number of varieties of the LID facilities that can be used at a sub- 
catchment; Runoffbaseline and RunoffLID are the simulated runoff in the 
scenario without and with the LID layout, respectively. Once the con-
struction of the LID practice was completed, yearly maintenance was 
required over its entire life for the regular operation of the LID facility. 
As the lifetime varied with the type of LID practice (Table 3), we adopted 
the total annual budget as an economic performance indicator. The 
initial construction cost Pj was uniformly transformed into the annual-
ized construction cost A1j over a nj-year project lifetime at an annual real 
interest rate ofi, which could be expressed as equation (4): 

A1j = Pj
i(1 + i)nj

(1 + i)nj − 1
(4) 

The one-for-one method to place LID practices (Rossman, 2010) was 
always applied in models with fine-resolution sub-catchments, and 
landscape architects and urban planners were invited to identify the 
suitable LID sites and subdivide the study area into small units based on 
the site feasibility (Table S1), landscape architecture, and local con-
struction guidelines (Bach et al., 2018). There were several alternative 
types of LID implementation on a site, but only one could be selected at 
one run. Accordingly, the decision variables x  = (x1, x2, ..., xn) referred 
to the selected type of the LID practice in each unit. The type of LID 
practice selected for the n th sub-catchment isxn, and it was chosen from 
a list of types of LID practices that were suitable for the n th sub- 
catchment. Correspondingly, the range of xn was one of the values 
in{0,1, ..., t}, where 0 represents no LID facility was built in the n th sub- 
catchment, t is the sum of the types of LID practices that can be placed in 
sub-catchment n, and the codes from 1 to t represents different types of 
LID practices. Such as, in terms of the sub-catchment made up of a flat 
roof,xn ∈ {0,1,2}, in which 1 represented green roof and 2 represented 
rain barrel. This means that the lower bounds of all decision variables 
were set to 0, while the upper bounds depended on the number of the 
types of LID practices that were feasible to build in the corresponding 
sub-catchment. 

However, the one-for-many method was more suitable for the model 
with coarse-resolution sub-catchments. There were several varieties of 
land cover in a sub-catchment, so it could simultaneously contain mul-
tiple types of LID facilities. As such, the decision variable was altered to 
the area of each type of LID practice at each sub-catchment, expressed as 
x =(x11,x12,...,x1k,...,xm1,xm2,...,xmk), where k is the type of LID practice, 
m is the sub-catchment number. There are two constraints: one is that 
the value of xmk must not be greater than the suitable area in the m th sub- 
catchment for the LID practicek, and the other is that the sum of the area 
of each type of the LID practice allocated at the m th sub-catchment (xm1,

xm2, ..., xmk) must be less than or equal to the total area of sub- 
catchmentm. 

2.4.2. Development of GDE3 
Numerous studies have demonstrated that there is no single algo-

rithm outperforming the others (Huo et al., 2016; Keshavarzzadeh and 
Ahmadi, 2019; Quresh et al., 2019; Vargas et al., 2021) and the 
preferred algorithm depends on the definition of the optimization 
problem such as the number of decision variables and constraints. Since 
the goal of this study is to examine the scale effect, based on the study 
conducted by Li et al., (2022), the Third Evolution Step of Generalized 
Differential Evolution (GDE3) was chosen to optimize the placement of 
LID practices due to its prominent mutation and crossover operators. 
The overall structure can be expressed as follows:  

1. Initialize the parent population of the size NP randomly with values 
from the specific range. As the decision variables in model R1 
changed within a small number of discrete values and there was no 
constraint, the initial values of parent population was generated 
randomly. For models R2, R3, and R4, the ranges of decision vari-
ables consists of a large number of discrete values. More importantly, 
there were many solutions that did not satisfy the defined con-
straints. As such, values that located at one-quarter or one-fifth of the 
ranges while meeting the restrictions were used as initial solution to 
ensure the smooth progress of the optimization.  

2. Repeat until the termination condition is satisfied:  
a) Generate offspring population after repeating NP times:  

i. Select a point from the parent population  
ii. Generate a new offspring point with mutation and crossover  

iii. Update the impervious rate and width for a new offspring 
point (Rossman, 2010)  

b) Combine the parent and offspring populations.  
c) Select the best NP points for the subsequent evolution according 

to fast non-dominated and crowding distance sorting. 

The outstanding characteristic of the GDE3 is its mutation and 
crossover operators, which act on each element of each solution through 
internal loops. The GDE3 is an extension of the differential evolution 
(DE) algorithm, whose crossover and mutation operations are deter-
mined by the crossover rate (CR ∈ [0,1]) and the mutation factor (F ∈ R). 
PG is a population of NP solution vectors (sets of decision variables) xi,G 

in a generationG, and i ∈ {1,2, 3, ...,NP} is a vector index. Each xi,G is an 
n-dimensional vector, and xj,i,G is its j th element (i ∈ {1,2,3,...,n}). Three 
solution vectors, namely,xp1 ,G,xp2 ,G, and xp3 ,G that are mutually different 
and different from xi,G are randomly selected from the parent pop-
ulation.xj,p1 ,G,xj,p2 ,G, and xj,p3 ,G were the j th elements ofxp1 ,G,xp2 ,G, 
andxp3 ,G, respectively. A trial element yj,i,G is generated by crossover 
operations and a trial vector yi,G is obtained after the loop (See Fig. S1 in 
the supplementary material). 

3. Results 

3.1. Performance differences between generations 

In this study, a population size of 200 was evolved for generations 
200 and 500 to examine how generation affected optimization results of 
models at various resolutions. As the solution sets were discrete, the 
solutions under various scenarios did not always have the same cost or 
reduction rate. For the convenience of data analysis, when calculating 
the difference in the reduction rate between the different scenarios, the 
two points with the closest cost were selected for comparison. The 
average percent differences in the reduction rate (with respect to 200 
generations) for 500 generations (AvPD-Ge values) are listed in Table 4. 
For model R4 with the lowest resolution, the AvPD-Ge values are rela-
tively minor (less than0.38%), indicating that the front curve remains 

Table 3 
Life cycle and cost of each adopted LID practice.   

Life 
cycle 
(year) 

Annualized 
construction cost 

Annual 
maintenance cost 

Total 
cost 

Green roof 60  6.9  9.2 16 
Rain barrel 5  125.2  0.8 126 
Rooftop 

disconnection 
5  0.8  0.8 2 

Porous 
pavement 

15  9.8  2.3 12 

Rain garden 80  8.5  12.3 21 
Bio-retention 

cell 
80  16.1  12.3 28 

Vegetated swale 8  2.5  1.2 4 
Infiltration 

trench 
7  5.6  1.1 7 

Note: the cost unit of the rain barrel is USD/per rain barrel, and the cost unit of 
other LID practices is USD/m2. 
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stable when the generation reached 200, and further evolution is un-
necessary. The AvPD-Ge values rise with the increase in resolution. The 
AvPD-Ge values for higher-resolution models R1 and R2 range from 1.62 
% to 5.79%, which indicates that models at finer scale are more sensitive 
to generations. The number of decision variables for models R1, R2, R3 
and R4 are 430, 192, 32 and 16, respectively. As a result, this may be 
explained by the fact that models at finer scales have more decision 
variables, requiring more generations to yield a stable optimal solution 
set. Additionally, it is worthwhile to note that, as shown in Table 5, it 
takes significantly longer to optimize higher-resolution models; how-
ever, while model R1 has twice as many decision variables as model R2, 
the difference in processing time is relatively small. This is because, for 
model R2, the range of decision variables is much boarder, and there is a 
requirement to select solutions that satisfy the constraints during the 
optimization process. 

3.2. Scale effects on the LID layout optimization 

Following the results in Section 3.1, it is hypothesized that the so-
lution sets reach a more stable state after 500 generations. These results 
were then used to analyze the effects of modeling scales on the LID 
layout optimization under the rainfall events of the return periods of 0.5, 
5, and 20 years, as shown in Fig. 5. It is evident that the distribution 
ranges of solutions produced by models R1 and R2 are the narrowest 
regardless of the type of rainfall event, but most runoff reduction rates 
computed by model R1 are higher than those computed by other models, 
particularly for the 0.5-yr and 5-yr rainfall events. It is suggested that for 
the low-intensity rainfall events, the layout schemes of LID practices 
optimized by model R1, in which one-for-one methods are applied to 
deploy LID practices spatially, could reduce runoff more effectively at 
the same cost point. In addition, the front curve for model 4 has the 
greatest coverage and most cost-effective schemes, followed by model 3 
and finally model R2. This result indicates that when applying the one- 
for-more method to place LID practices, the coarser the sub-catchment 
resolution is, the better the performance of optimizing LID layouts 
would be. It might also be related to the variation in the number of 
decision variables, since the number of decision variables decrease as 
the spatial scale become coarser. More importantly, as the return period 
of rainfall events increase, the differences between the front curves of 
Models R1, R2, R3 and R4 become smaller and tend to merge together. 
That is, the modelling scale has less impact on optimization layout of LID 
practices under high-intensity rainfall events. 

Based on each solution on the front curve (see Fig. 5), the total area 
occupied by each type of LID practice was calculated and plotted against 
the resolution of the sub-catchment discretization, as shown in Fig. 6. 
Outliers are solutions that were numerically out of the ordinary. Apart 
from outliers, the area of LID practice generally varies within the 
interquartile range. For instance, under the 0.5-yr rainfall event, the 

total area of green roofs ranges from 0 to 1.3*104 m2 when optimizing 
model R1. This spread, however, changes to 0 to 0.4*104 m2, 0 to 
2.2*104 m2, 0 to 2.3*104 m2 when optimizing model R2, R3 and R4. It 
can be seen that the variation range of areas occupied by each type of 
LID facility for model R1 is smaller in comparison with other models. 
This is in agreement with the fact that the spread of optimal solution sets 
of model R1 is also smaller. Besides, for model R1, there is few rain 
barrel and rooftop disconnection applied in the layout design; and with 
the increase of return period of rainfall event, the variation range of rain 
garden and bio-retention cell is low, whereas the distributions of area of 
green roof, vegetated swale, infiltration trench, and porous pavement 
change dramatically. In the Model R2, the area covered by rainfall 
barrels, rooftop disconnection, rain gardens, and bio-retention cells is 
little, and most of the space is reserved for infiltration trenches and 
porous pavement. For models R3 and R4, the variation ranges of green 
roof, vegetated swale, infiltration trenches and porous pavement is 
broad, and more rooftop disconnections and rain garden were used in 
the layout design. The results indicate that models with varying reso-
lutions prefer different type of LID practices to optimize their layout 
schemes. 

3.3. LID layout at a specific target 

As can be seen in Fig. 5, the maximum runoff reduction rate for 
model R1 is about 60%. For the purpose of ensuring a clear under-
standing of LID layout schemes, a 60% runoff reduction was selected to 
analyze the difference of the spatial distribution of LID facilities for 
models R1, R2, R3 and R4, as illustrated in Fig. 7. In each sub-catchment, 
a pie chart was created to illustrate the relative proportion of each type 
of LID practice. From the layout map of model R1, it is clear what type of 
LID practice should be located where. In comparison with other models, 
the layout generated by Model R1 can serve as a design scheme for 
implementation in a practical setting. Nevertheless, from the layout of 
model R2, R3, and R4, we can only estimate the proportions of each type 
of LID practice to be deployed within each sub-catchment. 

Additionally, layouts for a 20-yr rainfall event were applied to two 
real rainfall events described in Section 2.3.3 and and a 50-yr design 
rainfall event in order to analyze differences in hydrological responses 
between optimized models at various discretization scale. Table 6 shows 
that the differences in the reduction rate between the schemes of each 
model are very small (less than 1.46%) during a 50-yr rainstorm, while 
the difference during two real rainstorms varies within 6.33%. The 
scheme optimized by model R4 performs the worst regardless of the type 
of rainfall; besides, the layouts generated by models R1 and R2 are able 
to capture more runoff during the rainfall events of Jun 7 and Aug 28, 
respectively. It can be found that the reduction rates of model R2 are 
relative high under these two ocnditions, but its budget is also the 
highest at 61.25*104 USD. In other words, the optimal layout of model 
R2 achieves a similar runoff control target (60%) at a higher cost than 
other models under a 20-yr rainstorm, but it can capture more runoff 
under the rainfall events with different shapes. This indicates that the 
hydrological performance of LID layout are sensitive to the patterns of 
rainfall events. 

4. Discussion 

4.1. Implication and cause analysis 

As mentioned previously, most studies have focused on embedding 
the SWMM model into various MOOAs to improve the performance of 
the layout optimization of LID facilities, while ignoring the scale effects 
caused by the spatial delineation of the SWMM model. By contrast, the 
present study reveals the impact of sub-catchment resolutions on the 
layout optimization of the LID facilities during rainfall events with 
varying intensities, which could facilitate the selection of an appropriate 
spatial discretization scale to optimize the layout of LID facilities. 

Table 4 
Average percent difference in reduction rates between 200 generations and 500 
generations (AvPD-Ge).   

Model R1 Model R2 Model R3 Model R4 

P = 0.5a  3.77  2.78  1.75  0.38 
P = 5a  5.79  2.88  0.35  0.33 
P = 20a  3.18  1.62  0.33  0.24  

Table 5 
Comparison of elapsed times for each model when it optimized for generations 
200 and 500 (unit: hour).   

Model R1 Model R2 Model R3 Model R4  
200 500 200 500 200 500 200 500 

P = 0.5a  1.23  3.16  1.87  3.85  0.56  1.27  0.46  1.02 
P = 5a  2.21  5.29  1.9  4.05  0.58  1.32  0.46  1.12 
P = 20a  2.15  5.1  1.82  3.9  0.49  1.33  0.46  1.13  
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The results show that, for a given cost, runoff control effectiveness of 
the layout optimized by each model decreases with the increase of re-
turn periods of rainfall event, which is in line with previous studies that 
the performance of LID practices decreases with the growth of rainfall 
intensity (Lee et al., 2013; Qin et al., 2013; Yin et al., 2020). This in-
dicates that the main purpose of LID facilities is to resist small storm 
events. It is worth noting that this decline is more pronounced in model 
R1. In the beginning, it was suspected that this was related to the in-
adequacy of the evolution generations, and we then used the GDE3 to 
optimize model R1 under a 20-yr rainstorm for 1000 generations. 
However, the increase in generations only slightly enhances the per-
formance of the layout optimization, so the effect of generation on the 
distribution of optimal solution sets can be disregarded. It was also 
observed that the coarser the spatial resolution, the broader the spread 
of optimal cost-effective solutions; the finest model R1 could provide 
better LID layout schemes at a lower cost, especially for low-intensity 
rainfall events, but for the models R2, R3, and R4, the cost- 
effectiveness of solutions decreases with increasing spatial resolution. 
This can be explained by the different number of decision variables and 
their ranges present in each model, since the data (i.e. elevation, land 
use, and drainage network) used for SWMM modelling were the same. A 
finer model always has a higher number of decision variables, like 436 in 
model R1, 192 in model R2, 32 in model R3, and 16 in model R4. 
However, despite having a greater number of decision variables, the 
ranges of decision variables in model R1 are the narrowest, only con-
sisting of a list of types of LID practices. When applying one-for-more 
method to place LID facilities, the ranges of decision variables in-
crease with the decline of the number of decision variables. Differences 
caused by spatial resolutions, such as the number of decision variables 
and their ranges, collectively affect optimization performance. Another 
significant advantage of model R1 is that its solution set can take into 
account high-cost LID practices such as rain gardens and bio-retention 
cells to achieve the flood control. Yet models R2, R3 and R4 prefer 
low-cost alternatives such as porous pavement, vegetated swales, and 
infiltration trenches. As such, in spite of similar performance on runoff 

control, solutions provided by R1 have addition benefit in conserving 
biodiversity, mitigating urban heat and improving air quality. However, 
constructing model R1 with units representing one type of land cover 
requires researchers to conduct a field study to determine which type of 
LID practice can be deployed and subdivide the catchment carefully, and 
it is also time-consuming to optimize model R1. As such, it is not rec-
ommended to apply the subdividing method like model R1 to a large 
area. 

It can be found that when applying one-for-more method to 
distribute LID facilities, coarser model can provide more cost-effective 
layout schemes. But it does not mean that a coarser model always per-
forms better, as the results showe that model with a coarser resolution 
may perform poorly under other rainfall patterns. This suggests that 
further testing is required to understand the trade-offs between spatial 
scale, rainfall pattern and the optimal solution sets. Another important 
finding is that during the high intensity rainfall event (P = 20a), the 
distributions of optimal sets for models at various scales are very similar. 
Perhaps this is due to the fact that a coarser model has the ability to 
increase the proportion of LID practices with lower costs, such as porous 
pavement, infiltration trench, and vegetative swales. Then when the 
study area is large, it is recommended to delineate sub-catchments at a 
moderate scale for optimization in order to save time in processing data 
whilst achieving better front curves. 

4.2. Advantage and deficiency of the study 

As opposed to previous studies (Li et al., 2022; Liu et al., 2019), 
which aimed to improve the performance of LID layout by applying 
different MOOAs, the objective of this study is to examine the scale ef-
fects on the optimization of LID deployment. One of the most significant 
findings is that when the one-for-more method is adopted to place the 
LID practices, the study area could be coarsely delineated to reduce 
runtime without comprising performance. Another finding is that the 
fine model, deploying LID practices by the one-for-one method, could 
provide more cost-effective solutions with multi-type LID practices, but 

Fig. 5. The scale effects on cost-benefit curves under various rainfall events with return periods of 0.5, 5 and 20 years. The y- and x-axis represent the reduction rate 
of the outfall outflow volume and the total annual budget, respectively. 

Fig. 6. Statistical comparison of areas occupied by various LID designs at R1, R2, R3 and R4 model resolutions.  
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the preliminary subdividing work and optimization process is much 
more cumbersome and the spread of optimal cost-effective solutions is 
narrow. The results can guide modelers in selecting appropriate spatial 
delineation methods, which has not yet been explored in previous 
studies. In the case of a small urban area, a fine model with one-for-one 
method would be preferred, as its layout could offer multiple functions 
and could be directly applied in practice, thus reducing budget waste 
resulting from the gap between research and application. To a large 
area, it is recommended to obtain an initial optimization result at a 
coarse scale as a guideline for urban planning, and then refine a fine- 
scale layout design for a specific area when applied to engineering 
practice. Therefore, it is worth taking the time to conduct this research. 

However, some deficiencies remained in this study. For example, due 
to limited data availability, only one study area (9.7 ha) was applied to 
examine the scale effects of the layout optimization, so it is more suit-
able to apply the conclusion into a urban catchment with similar size. 
More general conclusions should be drawn by taking larger or smaller 
areas as examples. Based on the previous study conducted by Li et al., 
(2022), only one MOOA, the GDE3, was selected to analyze the 

optimization performance of the LID deployment. The results were 
privately compared to those optimized by the commonly used NSGA-II, 
and the comparison shows that the performance differences between 
these two MOOAs could be ignored. Optimal results might be improved 
if an algorithm is tailored specifically to the layout problem of this study, 
such as a finer-scale model with a narrow solution set, was proposed. As 
discussed in section 4.1, the layout optimization of LID practices may 
also be influenced by patterns of rainfall events, such as bimodal, uni-
form, and unimodal (with early peak and late peak) shapes (Zhang et al., 
2021). It is also a challenging undertaking to determine which rainfall 
event should be used to optimize the model. Furthermore, LID practices 
serve multiple functions in urban design, such as cooling, amenity, 
sanitation, and biodiversity, and these factors should be taken into ac-
count for the layout optimization of LID practices in the future study. 

5. Conclusion 

In this research, we took the CIC in Guangzhou, China, as the case 
study to investigate the effects of the modeling scales on the LID layout 
optimization. The SWMM model was used to simulate the hydrological 
response of each layout, which involved two types of LID deployment 
approaches, namely one-for-one and one-for-many. When applying one- 
for-one method, the model R1 with the finest resolution can provide 
more cost-effective layout schemes consisting multiple types of LID 
practices, but this advantage is diminished during a 20-yr rainstorm. The 
solution set of the finest model R1 is the narrowest, and it can not 
provide layout schemes with higher runoff reduction rate (>60%). 
Additionally, considerable time and effort must be invested in the sub- 
catchment delineation and optimization process for the finest model 
R1, which did not suit a large area. However, the coarser models (R2, 
R3, and R4), which applied one-for-more method to place LID practices, 
can achieve a wider solution set while yielding similar benefits during a 
heavy rainfall event. Therefore, if a high-intensity rainfall event is 
selected to carry out SWMM model, it is more appropriate to apply a 
coarser model at the planning stage to ensure the investment and runoff 
control targets, whereas the finest model is better suited to be applied at 
the implementation stage to provide a layout that covers a variety of LID 
practices and their corresponding sites. 

In summary, our findings provide new perspectives on the selection 
of spatial discretion resolutions in the LID layout optimization process. 
However, rainfall pattern and regional differences should also be noted 
when examined the scale effect of LID layout optimization. For future 
studies, it is suggested that various rainstorm patterns and case studies 
should be considered so as to minimize uncertainties as much as possible 
and achieve more reliable results. 
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Fig. 7. Spatial layouts of various LID facilities at a 60% runoff reduction.  

Table 6 
Reduction rate of the optimized model applied to the measured rainfall event.   

Model R1 Model R2 Model R3 Model R4 

Cost (×104USD)  61.35  62.39  54.42  51.39 
P = 50a  55.43%  56.54%  56.64%  56.89% 
Jun 7, 2018  51.47%  50.39%  46.99%  45.14% 
Aug 28, 2018  60.36%  63.32%  64.31%  59.04%  
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