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Abstract: The price of a house is affected by both the subjective and objective factors of the street
environment in a neighborhood. However, the relationships between these factors and housing prices
are not fully understood. Street view imagery (SVI) has recently emerged as a new data source for
housing price studies. The SVI contains both objective and subjective information and can be used to
extract objective measurements describing the physical environment and subjective measurements
depicting human perceptions. Compared to conventional methods, there is consistency between
subjective and objective information extracted from SVIs, and the two types of information are
acquired from the perspective of the human visual perceptual system. Therefore, using both objective
and subjective information extracted from street view images to study their relationship with housing
prices has several advantages. In this study, focusing on the city of Suzhou, China, we extracted
subjective perception and objective view indices from SVIs and systematically assessed their effects on
housing prices. The global ordinary least squares (OLS) regression model and the local geographically
weighted regression (GWR) model were used to model the correlations between these measures and
housing prices. The OLS reveals that overall objective measures have stronger explanatory power,
and built environment factors have a greater impact on housing prices. GWR shows that subjective
factors can explain more variance in housing prices on the local scale and that home buyers care
more about the subjective perceptions of the neighborhood’s surroundings. The map of the GWR
local coefficients demonstrates that the perception indicators have both positive and negative effects
on housing prices in different places. In addition, a Monte Carlo test was performed to verify the
spatially varying relationships between these measures. Our findings provide important references
for urban designers and guide various applications, such as safe neighborhood design and sustainable
city planning.

Keywords: street view imagery; housing prices; human perception; Simpson’s paradox; geographically
weighted regression

1. Introduction

Housing price studies have received growing attention in recent years because of the
availability of housing data and the important role of housing in human life [1–3]. Housing
prices are determined by several groups of characteristics, such as structural, locational and
neighborhood attributes [4]. Streets near houses can provide residents with opportunities
for strolling and socializing [5]. The streetscape is the “outdoor room” one encounters

Land 2023, 12, 2095. https://doi.org/10.3390/land12122095 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land12122095
https://doi.org/10.3390/land12122095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0003-2146-6259
https://orcid.org/0000-0002-5311-8761
https://doi.org/10.3390/land12122095
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land12122095?type=check_update&version=2


Land 2023, 12, 2095 2 of 25

when turning the corner or stepping out the door into the street [6]. The quality of a
streetscape is associated with user well-being [7]. People tend to live in houses surrounded
by high-quality streetscapes with many trees or that are perceived as beautiful and safe [8,9].
Understanding the relationship between streetscapes and housing prices can provide new
insights into the composition of housing prices and is beneficial for applications, such as
urban planning and real estate.

Conventional approaches to streetscape evaluation include field surveys and inter-
views. These methods may lead to potential biases and are costly and time consuming [10].
Street view imagery (SVI) has recently become widely used as an emerging source of
big data [11,12]. The SVI is publicly available and provides an alternative to traditional
methods [11]. Owing to machine learning and deep learning, the SVI has become highly
effective for assessing streetscapes in urban environments. There are two types of indicators
for measuring streetscape qualities from the SVI [13]. The first is an objective measure
that describes the physical appearance of streets, such as the green view index (GVI) [14],
pedestrian volume [15], and sidewalk length [16]. Prior studies have mainly used objective
measures to study the relationship between streetscape quality and housing prices [8,17].
For example, visible street greenery has been found to have a significant positive effect on
housing prices [8]. However, we can only learn about one side of a street from objective
measurements. Specifically, they do not capture a street’s human perceptions, which may
have subtle or complex relationships with physical elements [18]. The second category
includes subjective measures depicting human perceptions, such as beautiful, safe and
enclosure [19]. They described the raters’ overall perceptions of street view images. Ana-
lyzing the effects of the street environment’s human perceptions on housing prices may
provide a comprehensive understanding of housing prices [13]. For example, the enclosure
measurement was found to have a negative relationship with housing prices [13]. Although
objective and subjective measures have distinct effects on housing prices, the strength of
the association between these measures and housing prices is not fully understood.

Previous research has focused on the perceptions favored by urban planners [13,20,21].
These perceptions included enclosure, human scale, complexity, imageability, safety, green-
ness, and walkability. These are the professional opinions of urban planners, which are
difficult for ordinary house buyers to comprehend. Personal perceptions, which are more
subjective than professional perceptions [18], such as safety, wealthy, lively, beautiful,
boring, depressing [9], class, and uniqueness [22], are closely related to residents’ daily
lives. Therefore, for housing buyers and renters, these personal perceptions offer additional
references and values. However, prior studies usually employed the Place Pulse dataset
(Place Pulse 1.0 and 2.0) [9] created by MIT Senseable City Lab researchers to measure
the visual perceptions of Google Street View images, which may not be appropriate for
Chinese cities. The Place Pulse 2.0 dataset contains 110,988 SVIs spanning 56 cities in
28 countries [23] and does not include SVIs from mainland China. Although the Place
Pulse 2.0 dataset can be applied to other cities, each city has its own socio-economic status
or physical environments, such as building styles [24–26], which may pose problems and
lead to perceptual biases in people. To estimate premiums on housing prices, it would be
ideal to use a perception dataset with locally obtained SVIs and local evaluations.

This study aimed to understand the impact of subjective emotional and objective view
measures on housing prices using locally obtained SVIs in China through a comprehensive
assessment. In this study, we extracted subjective perception and objective view indices
from SVIs and systematically compared their effects on housing prices. We considered
Suzhou City, China, as an example. The subjective perceptions were safety, wealthy,
lively, beautiful, boring, and depressing, and they were more relevant to people’s daily
lives. Locally collected SVIs were used to train a deep learning model to predict human
perceptions of the street environment. The effects of subjective and objective measures on
housing prices were assessed with ordinary least squares (OLS) regression. To account for
spatial heterogeneity, GWR was also performed.
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This study makes three main contributions to the literature. First, we comprehensively
assessed the relationship between objective/subjective measures and housing prices. Sec-
ond, we discussed how certain perceptions may affect housing prices. Third, we explored
the effects of these measures on housing prices, both globally and locally. We do not intend
to make any causal statements. Our study aims to use this correlation to demonstrate the
need to incorporate human perceptions into housing price studies. Our study provides a
significant reference for urban planners to enhance urban environments from the viewpoint
of human perception.

2. Literature Review
2.1. Housing Price Modeling and Spatial Heterogeneity

Extensive research has been conducted to analyze the different factors that affect
housing prices [1,27,28]. The willingness to pay for these attributes can be inferred using
the hedonic price modeling (HPM) method [4] in environmental economics. Due to its
simplicity and interpretability, OLS regression is the most popular HPM technique.

OLS provides a set of coefficients for all observations and is, therefore, a global model.
OLS ignores spatial heterogeneity, implying that different locations within a given area
exhibit distinct features or patterns. This may lead to the Simpson’s paradox, which refers
to the reversal of results when datasets are analyzed separately and then combined. This
indicates that it is risky to analyze aggregated data. It is essential to mitigate this problem
by modeling spatially varying relationships [29].

Geographically weighted regression (GWR) [30] has been used as an effective model to
detect spatially varying relationships. GWR estimates different coefficients for observations
at different locations and is, therefore, a local model that can reduce the problem of Simp-
son’s paradox. While OLS establishes the baseline, GWR is recommended for improving
the estimation of housing prices.

2.2. Streetscape Measures from SVI

Both the objective and the subjective groups of information can be derived from SVIs.
Examples of common objective measurements include the GVI [31,32], the sky view index
(SVI) [33], blue spaces (e.g., rivers, lakes) [34], and frontage [35]. As objective measures
are simpler to extract than subjective measures, some studies first extract view indices
from SVIs and then use view indices to compute subjective human perceptions through
specific mathematical models. For example, the view indices of psychological greenery,
visual crowdedness, outdoor enclosure, and visual pavement were combined to constitute
an integrated visual walkability index [36]. Ito employed both objective and subjective
SVI indicators and other non-SVI indicators to construct a comprehensive bikeability
index [37]. Ma [38] used objective view indices to form perceptions of openness, greenness,
enclosure, walkability, and imageability. Subjective measures are believed to depict the
environment more completely than objective measures [16]. Subjective measures have
complex and subtle relationships with objective measures. Ewing presented operational
definitions of five perceptions (imageability, enclosure, human scale, transparency, and
complexity) and provided novel insights into the relationships between physical features
and perceptions [18]. Street-level perceptions can be measured subjectively through surveys
or objectively by recombining view indices extracted from SVI [38].

2.3. Effects of Streetscape Measures on Housing Prices

An important aspect of assessing the effectiveness of environmental policies in im-
proving streetscapes is the quantitative measurement of the economic value of the benefits.
Houses surrounded by better streetscapes will have this benefit capitalized into their value,
and this should be reflected in a higher sales price. Regarding objective measures, Ye found
that visible street greenery had a significant positive effect on housing prices [8]. Fu showed
that greenery and sky view indices could significantly increase housing prices [17]. Chen
found that the impacts of the green view index and sky view index on housing prices were
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nonlinear; the green view index had a positive effect, whereas the sky view index had a
negative effect [39] on housing prices. Objective measures can only describe the physical
settings of the street environment and cannot fully capture people’s overall perceptions of
the streetscape [18].

For subjective measures, Buonanno confirmed that security perception was positive
for a property’s average value in Barcelona [40]. Kang incorporated six human perceptions
(safe, beautiful, depressed, lively, wealthy, and boring) into the HPM and found that posi-
tive perceptions (beautiful, lively, safe, and wealthy) had a positive correlation with housing
prices, and negative perceptions (depressing and boring) had a negative correlation [9].
The US cities of Boston and Los Angeles were selected as case studies for Kang’s study.
Based on the assumption that subjective indicators provide a more complete picture of the
street environment, Qiu compared the strength of objective measures and subjective urban
design-related measures (enclosure, human scale, complexity, imageability, and safety) and
revealed that the subjective measures individually had stronger strength than the objective
measures [13]. Despite employing the GWR to map the effects of various measures on
housing prices, Qiu neglected to thoroughly examine the positive and negative effects of
objective and subjective measures. Qiu subjectively and objectively measured six percep-
tions (greenness, safety, walkability, imageability, enclosure, and complexity) and found
that the collective strengths of perception indicators were nearly equal for both subjective
scores and objective counterparts; however, the subjective and objective indicators all had
opposite individual signs in explaining price variance [20]. Xu took a similar approach and
discovered that subjective scores explained more variance than objective scores and that
perceptions could not be fully represented by objective indicators [21]. For professional
perceptions (e.g., imageability), subjective indicators can explain more variance, but for
self-evident perceptions (e.g., greenness), objective indicators perform better. Qiu and
Xu used only the global model and did not consider local models, such as GWR [20,21].
Table 1 summarizes the models and measures used in studies on the effects of streetscape
perceptions on housing prices.

Table 1. Models and measures of studies related to the effects of streetscape perceptions on housing
prices.

Research Model Measures Case Study

Buonanno [40] OLS security perception Barcelona, Spain

Kang [9] OLS, GWR, PCA beautiful, lively, safe, wealthy, depressing
and boring Boston and Los Angeles, USA

Qiu [13] OLS, GWR, Spatial Regression enclosure, human scale, complexity,
imageability, and safety Shanghai, China

Qiu [20] OLS
greenness, safety, walkability, imageability,
enclosure, and complexity, with subjective
survey and objective equations

Shanghai, China

Xu [21] OLS greenness, safety, walkability, imageability,
enclosure, and complexity Shanghai, China

this study OLS, GWR beautiful, lively, safe, wealthy, depressing
and boring Suzhou, China

2.4. Summary

The following three knowledge gaps regarding the effects of streetscape measures on
housing prices are summarized:

First, personal perceptions have received little attention in the research on housing
prices. The perceptions (safe, beautiful, depressing, lively, wealthy, and boring) are more
relevant to local residents than Qiu and Xu’s chosen perceptions (enclosure, human scale,
complexity, imageability, and safety), which are based on urban planning theory [18]. Sub-
jective measures of urban design are more readily available to designers and planners than
to the general public. Therefore, they have fewer actionable implications for homebuyers
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and residents [13]. The effects of these perceptions on housing prices are not very clear, and
they have not been assessed or compared with objective measures.

Second, little research has been conducted on personal perceptions of housing prices
in China. Kang’s study focused on American cities, and the human perception dataset was
the Place Pulse dataset, which primarily comprised Western cities. However, each city has
unique characteristics. Urban perceptions obtained from the global Place Pulse dataset may
not apply to Chinese cities. Using a perception dataset with locally obtained SVIs and local
evaluations may be more appropriate for predicting perceptions.

Third, the global and local models have rarely been considered simultaneously. Most
studies have employed global models, such as OLS. However, inferring a policy from the
average results of a global model may be misleading. Local models, such as GWR, should
be used to reveal the spatially varying effects of streetscape measures.

Based on the aforementioned analysis, we assessed and compared the effects of
personal perceptions of housing prices with those of objective measures. Locally collected
SVIs were used to train a deep learning model to predict human perceptions. The effects of
these measures were assessed using OSL. To avoid misleading interpretations, GWR was
employed to account for the spatial heterogeneity of these measures.

3. Data and Methods
3.1. Research Framework

The major steps of the research framework are listed below and presented in Figure 1.
First, street view images were collected from the Baidu online map and fed into the deep
learning models PSPNet and convolutional neural network (CNN) separately to obtain
objective view indices (sky view index, tree view index) and subjective perception scores.
Community housing price data and other related variables were gathered from the Anjuke
online platform, and community price was set as the dependent variable. The road network
and the point-of-interest (POI) datasets were used to calculate hedonic variables. Finally,
the subjective perception scores and objective view indices were regarded as two groups
of interpretable variables and added with control variables. Using these two groups of
variables, we compared and analyzed the results of stepwise regression and GWR.

3.2. Study Area

Our analysis was conducted in Suzhou, a city located in the Jiangsu province of China
ranging from 119◦ 55′ E to 121◦ 20′ E longitude and from 30◦ 47′ N to 32◦02′ N latitude. The
total area of Suzhou was 8657.32 km2 and its population was 12.75 million as of 2020 [41].
Suzhou lies with Shanghai to the east and is the most populous city in Jiangsu Province. It
is one of the first national historical and cultural cities, known as “the heaven on the earth”.
The central city consists of the Gusu District, Industrial Park District, Wuzhong District, Xin
District, and Xiangcheng District. In 2020, the GDP of Suzhou exceeded 2 trillion Chinese
Yuan(CNY) for the first time, making it the sixth 2 trillion CNY city in China, and the
city’s housing prices have been growing rapidly in recent years. Suzhou is characterized
by a network of canals, rivers, and numerous small lakes. These waterways have earned
Suzhou the nickname “Venice of the East”. The city is known for its traditional architecture,
with well-preserved historic areas featuring narrow streets, stone bridges, and traditional
Chinese buildings. The central region of Suzhou was selected as the study area in the
present study.

3.3. Data
3.3.1. Housing Prices

Housing prices for 1389 communities as of December 2022 were collected through
web crawling technology from the Anjuke website [42]. Anjuke is a large website that
offers real-estate information services and serves numerous cities in China. Community
attributes, such as address, building year, property fee, floor area ratio, and greenspace
proportion, were also gathered. Duplex flats and villas were not included in the scope of
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this study, thus avoiding potential biases and increasing the reliability of the findings. Price
is the average price of the properties currently on sale for the current month. The latitude
and longitude coordinates of residential communities were gathered using Baidu Map’s
geocoding service, and community attributes were combined with housing price data, as
shown in Figure 2.
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3.3.2. POI and Road Network

Additionally, POI data for Suzhou were gathered from the Baidu map platform using
web crawling technology. The categories in the POI data were utilized to extract bus stations,
metro stations, primary/middle schools, and hospitals, which were then used to compute
the locational and neighborhood attributes in the HPM. The road network of Suzhou was
extracted from the Open Street Map (OSM, https://www.openstreetmap.org (accessed
on 21 May 2023)) and used to calculate the network distances between communities and
amenities.

3.3.3. Street View Images

Subjective human perceptions and objective view indices of the street environment
were obtained using SVIs. The SVIs of Suzhou were collected from the Baidu Map in
December 2022. Baidu Maps, a Chinese map service provider, is comparable to Google
Maps in that it provides street viewing services to numerous Chinese cities. We used the
road network data of Suzhou City to construct sampling points for street view images at
100 m intervals along the streets. Based on the location of the sampling points, images in
the horizontal direction closest to the sampling points were obtained through web requests.
Four acquisition directions (90◦, 180◦, 270◦, and 360◦) were specified at each sampling

https://www.openstreetmap.org
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point to capture its full view. Each image had a resolution of 960 × 720 pixels. There were
43,382 sampling points in the study area, and 173,528 images were collected.
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3.4. Data Preprocessing
3.4.1. Calculation of Subjective Perception Scores

Deep learning is the primary method used to extract human perceptions from SVIs.
Deep learning can be used to obtain human perception in two ways. One fits the human
perception scores directly and automatically learns the deep features of an image. For
instance, Dubey et al. trained an end-to-end Siamese-like convolutional neural model on
the Place Pulse 2.0 dataset to predict the human perception score of a street view image [23].
Wang et al. [43] designed a CNN model based on VGGNet and trained it on a Chinese
urban perception dataset [44]. Another method extracts image features using deep learning
semantic segmentation techniques and uses additional machine learning models, such
as the random forest model, to fit the human perception scores. For example, Yao et al.
employed a fully convolutional network to semantically segment the features of SVIs and
estimate the areal ratio of each semantic object [24]. The areal ratios were then fed into a
random forest model to fit human perceptions. Zhang et al. developed a CNN model based
on a residual network to learn the deep features of SVIs and trained an SVM classifier to
predict the human perception score [19].

The accuracies of the CNN approach and Yao’s method were compared by Wang
et al. [24], and it was discovered that the former was superior to the latter because it
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considered the topological properties of semantic objects [44]. The former method is faster
and simpler. Furthermore, the CNN model introduced by Wang et al. was open-source
(https://doi.org/10.6084/m9.figshare.12552233 (accessed on 23 May 2023)), trained on a
Chinese (Wuhan city) urban perception dataset, and was more suitable for the present study
than other models trained on the global Place Pulse 2.0 dataset. Therefore, we employed
Wang’s CNN model to quantify the human perception scores of the SVIs.

The architecture of Wang’s model is illustrated in Figure 3. Traditional CNN models
are typically used for image classification tasks. Wang modified the traditional CNN model
and replaced the softmax layer used for classification with a fully connected layer to gather
deep-image features and predict human perceptions.
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After predicting the six perception scores for each SVI, the average SVI scores for
the SVIs of all four directions at each sampling point were calculated. Then, the scores of
the SVIs with a 1 km buffer (15 min walking distance) of a community were averaged to
represent the street perception of the community [13,36]. Descriptive statistics for the six
perceptions are presented at the bottom of Table 2.

3.4.2. Extracting Objective View Indices

The objective view index of a street view image is the areal ratio of a semantic object
to the total number of pixels in the image. This can be calculated using Equation (1).

VIobj =
∑m

i=1 Areaobj_i

∑m
i=1 Areatotal_i

× 100% (1)

where Areaobj_i is the number of pixels of a particular object obj (e.g., building, sky, or tree)
obtained by the deep learning semantic segmentation algorithm in direction i. Areatotal_i
is the total number of pixels of one SVI. The number m represents the number of SVI
orientations that a camera will capture at one sample point, which was four in this study.

To extract semantic features from the SVIs, the Pyramid Scene Parsing Network (PSP-
Net) model [45] was employed. PSPNet is a deep-learning-based semantic segmentation
network that extracts scene information from global to local scales to better recognize and
distinguish between various objects. Figure 4 shows the PSPNet architecture. PSPNet
has a wide range of applications in image segmentation and scene understanding tasks,
with advantages such as high accuracy, high speed, and low computational cost. This is
appropriate for various high-level computer vision tasks.

https://doi.org/10.6084/m9.figshare.12552233
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Table 2. Descriptive statistics of all variables.

Variable Definition Mean Std

Ln_Price RMB (Chinese currency)/m2, dependent variable, the natural logarithm of
the original price

10.197 0.354

Structural attributes Description Mean Std

FAR Floor area ratio 1.68 0.835
Age Age of the building 18.862 7.322

Locational attributes Description Mean Std

D_CBD Network distance (km) to the CBD (the Suzhou Industrial Park) 13.739 6.213
D_Bus Network distance to the nearest bus station (km) 0.306 0.210
D_Metro Network distance to the nearest metro station (km) 1.042 1.249
D_School Network distance to the nearest primary/middle school (km) 0.424 0.369
D_Hospital Network distance to the nearest hospital (km) 0.552 0.542

Neighborhood attributes Description Mean Std

N_Bus Number of bus stations in 1000 m walking distance 7.534 4.837
N_Metro Number of metro stations in 1000 m walking distance 1.433 1.368
N_School Number of schools in 1000 m walking distance 6.34 4.536
N_Hospital Number of hospitals in 1000 m walking distance 2.788 1.309

Subjective perceptions Description Mean Std

S_Beautiful Beautiful perception 37.818 4.416
S_Lively Lively perception 36.256 2.817
S_Safe Safe perception 37.143 1.725
S_Wealthy Wealthy perception 42.717 2.482
S_Boring Boring perception 60.134 1.516
S_Depressing Depressing perception 53.568 2.391

Objective view index Description Mean Std

O_Sky Sky view index 30.069 7.13
O_Building Building view index 20.976 9.237
O_Tree Tree view index 17.369 6.917
O_Road Road view index 13.796 3.053
O_Wall Wall view index 2.856 2.148
O_Car Car view index 2.548 1.372
O_Sidewalk Sidewalk view index 2.67 0.963
O_Plant Plant view index 2.335 1.26
O_Grass Grass view index 1.534 1.256
O_Earth Earth view index 0.867 1.136
O_Fence Fence view index 0.831 0.592
O_Ceiling Ceiling view index 0.52 1.417
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Using MIT ADE20K [46], the largest open-source dataset for semantic segmentation
and scene parsing, PSPNet achieved a high accuracy of 80.13%. ADE20K is a collection of
20,000 photographs with pixel-level annotations covering 150 object types in various scenes,
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including street scenes. It is useful for comprehending the semantics of urban environments.
This study used the PyTorch implementation of a pretrained PSPNet based on the ADE20K
dataset (https://pypi.org/project/mit-semseg/ (accessed on 19 May 2023)).

After semantic segmentation, 150 view indices were obtained. However, many view
indices were zero because the ADE20K object categories contained a large number of indoor
objects, which were uncommon in street scenes.

To eliminate objects whose view indices were extremely small for these 150 classes
of objects, the average view indices of each class of objects in all street view images were
calculated, and only objects with an average view index greater than 0.5% were retained.
Twelve classes of objects—sky, building, tree, road, wall, car, sidewalk, plant, grass, earth,
fence, and ceiling—were retained after preprocessing.

The average view indices for the SVIs in all four directions at each sampling point
were calculated for the 12 classes of view indices. Then, the average view indices of the SVIs
with a 1 km buffer (15 min walking distance) of a community were averaged to represent
the view indices for the community. The descriptive statistics of the 12 view indices are
shown at the bottom of Table 2.

3.4.3. Correlation Analysis

Zhang found that the Pearson’s correlation coefficients of subjective perceptions were
highly correlated, like beautiful–safe, beautiful–wealthy and depressing–safe [19]. The
view indices were also correlated and could lead to multicollinearity issues in multiple
linear regression (MLR). To inspect the linear relationship between the 12 view indices and
the six subjective perceptions, pairwise Pearson’s correlation coefficients were generated.

3.4.4. Analyzing the Importance of View Indices

View indices [13] or POI [24] can be used to predict and explain subjective perceptions
to a certain degree. The lightGBM model [47] was fitted to examine the relative importance
of each view index for each perception using the 12 view indices as explanatory variables
and the 6 perception scores as response variables. LightGBM is a gradient boosting frame-
work that uses a tree-based learning algorithm and is designed to be faster and more
memory-efficient. To analyze the importance of a feature, LightGBM measures the extent
to which each feature contributes to a model’s accuracy by calculating the average gain of
the splits where the feature is used.

3.4.5. Other Explanatory Variables

Other explanatory variables were selected based on data availability and a literature
review [1–3,8,9] and can be divided into structural, locational, and neighborhood attributes.
Building type, floor area ratio (FAR), and age of the building (Age) are common structural
attributes. Owing to data availability, the latter two indicators were selected. Locational
attributes are road network distances to various amenities, such as education, health care,
and commercial facilities. Educational institutions, including primary and middle schools,
can contribute to increases in housing prices. Healthcare facilities provide medical services
to various types of hospitals. The central business district (CBD) plays a crucial role in the
economic and commercial life of a city, and the CBD of Suzhou (the central region of the
industrial park district) was considered a commercial facility in this study. The locational
attributes comprised the distance to the CBD (D_CBD), nearest bus station (D_Bus), metro
station (D_Metro), primary or middle school (D_School), and hospital (D_Hospital). The
neighborhood attributes were the number of different facilities around the community,
including the number of bus stations (N_Bus), metro stations (N_Metro), primary and
middle schools (N_School), and hospitals (N_Hospital) in community neighborhoods within
a radius of 1000 m. The locational and neighborhood attributes were computed using
ArcGIS with POI and road network data. Table 2 provides the descriptive statistics for
these variables.

https://pypi.org/project/mit-semseg/
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3.5. Modeling Methodology
3.5.1. HPM

The HPM has been widely used to estimate the willingness to pay for a house based
on its characteristics, quality, and features [9,48]. The HPM assumes that the price of a
house is influenced by its characteristics, as well as the characteristics of market demand
and supply [4]. The HPM estimates the contribution of each feature to the house price and
helps identify the relative importance of each feature in determining the final price.

This study aimed to compare the contributions of subjective perception scores and
objective view indices to community housing prices. The subjective perception scores
and objective view indices belong to neighborhood attributes, and we distinguished these
two groups of neighborhood attributes from traditional neighborhood attributes. All of
these attributes are independent variables of the HPM, and Table 2 shows their descriptive
statistics.

The dependent variable of the HPM is community housing prices. We used the natural
logarithm of community housing prices as the dependent variable, which is called the
semi-logarithmic form of the HPM. It has several advantages over other functional forms,
including interpretability, flexibility, improved accuracy, and reduced heteroscedasticity.

3.5.2. Stepwise Regression

The conventional HPM uses the MLR model to model the relationship between two
or more attributes and community housing prices [13,28,49]. OLS is the most common
method for estimating the coefficients of variables in the MLR model.

We employed a specific type of MLR called stepwise regression, which is a variable
selection technique that iteratively adds or removes variables from the model and tests for
statistical significance after each iteration until the best set of variables is obtained [50]. By
selecting the most influential variables, stepwise regression can produce a more parsimo-
nious model that is easier to interpret. Therefore, stepwise regression rather than MLR was
chosen for this study.

Seven attributes were chosen using stepwise regression out of 11 structural, locational,
and neighborhood attributes, with a backward stepwise regression model that iteratively
removed variables. These seven attributes were FAR, Age, D_CBD, D_Hospital, N_Bus,
N_Metro, and N_School.

Using the seven attributes as control variables and subjective perception scores and ob-
jective view indices as interpretable variables, two groups of backward stepwise regression
models were constructed. There were seven control variables plus six subjective perception
scores and seven control variables plus twelve objective view indices. The threshold for
significance was set at p < 0.05. Variables with p-values > 0.05 were removed, and significant
variables were retained. Finally, S_Boring and S_Safe from the subjective perception score
group and O_Sky, O_Tree, O_Building, O_Plant, O_Car, O_Fence, and O_Ceiling from the
objective view index group were retained and regarded as explanatory variables. The MLR
model is expressed by Equations (2) and (3) for subjective perception scores and objective
view indices, respectively.

Ln_Price = β0 + β1 ∗ FAR + β2 ∗ Age + β3 ∗ D_CBD + β4 ∗ D_Hospital
+β5 ∗ N_Bus + β6 ∗ N_Metro + β7 ∗ N_School + β8
∗S_Boring + β9 ∗ S_Sa f e

(2)

Ln_Price = β0 + β1 ∗ FAR + β2 ∗ Age + β3 ∗ D_CBD + β4 ∗ D_Hospital + β5
∗N_Bus + β6 ∗ N_Metro + β7 ∗ N_School + β8 ∗O_Sky + β9
∗O_Tree + β10 ∗O_Building + β11 ∗O_Plant + β12 ∗O_Car + β13
∗O_Fence + β14 ∗O_Ceiling

(3)

where β0 is the intercept, and βi(i = 1, . . . , 9) in Equation (2) and βi(i = 1, . . . , 14) in Equa-
tion (3) represent the coefficients of the independent variables.
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The MLR model can also be expressed in matrix form:

Y = β01n + Xβ + ε (4)

where Y is an n× 1 column vector of dependent variables for each community i in the
sample (i = 1, . . . , n), 1n is an n× 1 column vector of ones associated with intercept β0, X is
an n× p matrix of the explanatory variables, β is a p× 1 column vector of coefficients, ε
is an n× 1 column vector of random errors, n is the number of communities, and p is the
number of explanatory variables.

3.5.3. GWR

MLR is a global stationary regression model. This implies that the coefficients of the
MLR are constant in space. However, owing to the complex spatial heterogeneity caused
by urban spatial structures, the modeling relationships vary across space.

To capture the spatially varying effects in modeling the relationships between the
dependent and independent variables, GWR establishes local functions corresponding to
each observation. The GWR model is expressed in Equation (5).

yi = βi0 + ∑p
k=1 βikxik + εi, i = 1, . . . , n, (5)

For each location i, yi is the dependent variable, βi0 is the location-specific intercept
term, βik is the local regression coefficient of the kth explanatory variable, xik is the kth
explanatory variable, and εi is the random error following a normal distribution. In this
study, a bisquare kernel function was selected to calculate the spatial weight matrix.

4. Results
4.1. Extracting Perceptual Scores and View Indices

Figure 5 displays four sample SVIs, semantic segmentation results, six predicted
perceptual scores, and eight dominant view indices. Different SVIs have different perceptual
scores and viewing indices. The perceptual scores and results of the semantic segmentation
appeared to be reasonable.

Owing to the Image A’s large tree and sky view indices, Image A had the highest beau-
tiful perceptual score. Despite being in a shopping district, Image B’s wealthy perceptual
score was low, likely because the image lacked trees. Image C appeared to be the wealthiest,
safest, lively, and boring image because of its extensive collection of urban scene objects.
Image D was believed to be the most depressing. This may be because the majority of the
images consisted of artificial buildings and were dark in hue.

4.2. Correlation Analysis

Six different types of perceptions are correlated, as Zhang (2018) showed [19]. The
Pearson correlation coefficients for the six indicators are displayed in Figure 6. Some
correlation pairs had a strong positive correlation, including “lively–safety” (0.56), “lively–
wealthy” (0.64), and “safety–wealthy” (0.52). In contrast, “beautiful–depressing” had a
strong negative correlation (−0.55).

This outcome deviates somewhat from that of Zhang’s study. According to Zhang’s
examination of the six perceptual indicators for Beijing and Shanghai in China, “beautiful–
safety” (0.819 and 0.667 for Beijing and Shanghai, respectively) and “beautiful–wealthy”
(0. 834 and 0. 639 for Beijing and Shanghai, respectively) were strongly positively corre-
lated. However, “beautiful–safety” (−0.06) and “beautiful–wealthy” (−0.07) were almost
uncorrelated in our analysis. This can be noted in Image A in Figure 5, which had the
highest beautiful score; however, its safety and wealthy scores were relatively low. This
was probably caused by the distinct urban environments in these cities and the different
datasets (Place Pulse 2.0 and the local dataset) used to train the perception prediction
models.
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In addition to the perceptual scores, the Pearson correlation coefficients of the top
12 view indices were calculated and are shown in Figure 7. Except for the “sky–tree”
(−0.54) and “sky–building” (−0.48) pairs, which were relatively highly correlated, most
correlations of view index pairs were weakly or moderately correlated, and this is consistent
with Qiu’s work [13].
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4.3. Feature Importance

The LightGBM was employed using the 12 most important view indices to predict
the six perceptual scores. The R2 metrics for measuring the fit performance of the six
perceptions are presented in Table 3. The R2 values for the six perceptions showed non-
negligible variance. Depression had the highest R2, which shows that the view indices
could explain 54% of the variance in depression scores. Boring had the lowest R2, and these
view indices could only account for 17% of the variance in boring scores.

Table 3. The R2 of LightGBM for the six perceptions.

Perceptions Beautiful Boring Depressing Lively Safety Wealthy

R2 36% 17% 54% 33% 24% 39%

The feature importance of the view indices based on the total gain across all splits
in LightGBM is displayed in Figure 8. In each view index group (sky, road, etc.), the six
bars represent the importance of a specific view index in predicting the six perceptions.
In general, the view indices with larger ratios are more important than those with lower
ratios. For instance, the sky, roads, trees, and buildings are more important than walls,
grass, fences, and earth. The contributions of the one-view index to the various perception
scores varied significantly. Compared to the importance of the lively (132) and wealthy
(151), the road view index for boring (50) was substantially less significant. The importance
of the plant view index for the beautiful (65) was significantly higher than that for the lively
(5) and wealthy (6). According to common sense, the earth view index can influence boring
and depressing more than other perception scores. Trees, cars, and sidewalks contribute
significantly to lively, safety, and wealthy, which is consistent with Zhang’s research [19].
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4.4. Stepwise Regression

Stepwise regression was applied to select the significant variables. The baseline model,
Model 0, was fitted with the attributes FAR, Age, D_CBD, D_Hospital, N_Bus, N_Metro,
and N_School, accounting for 33.98% of the variance in housing prices. Then, stepwise
regression was performed again to construct Models 1 and 2 using Equations (2) and (3), as
follows:

Table 4 summarizes the regression diagnostic data for each model, including the
adjusted R2, AICc, AIC, and residual sum of squares (RSS). In terms of adjusted R2, Model
1 (adjusted R2 = 34.46%) and Model 2 (adjusted R2 = 39.26%) improved by 0.48% and 5.28%,
respectively, compared with Model 0 (adjusted R2 = 33.98%). The values of the AICc, AIC,
and RSS metrics of Model 0 were higher than those of Models 1 and 2. This indicates the
effectiveness of the perception scores and view indices. Furthermore, the view indices
were slightly stronger than the perception scores. This is consistent with Qiu’s study [13],
although our subjective and objective indicators were not exactly the same.

Table 4. Regression diagnostic information of OLS and GWR estimations.

Model 0 Model 1 Model 2 Model 3 Model 4

Model OLS(Stepwise) GWR

Variables Baseline Perception scores View Indices Perception scores View Indices

Adjusted
R2 33.98% 34.46% 39.26% 72.3% 70.1%

AICc 493.244 485.178 384.592 −453.945 −230.686
AIC 491.113 482.987 382.196 −276.803 −370.407

Table 5 lists the regression coefficients for each model. Notably, the absolute values
of these coefficients were small because the dependent variable was the natural logarithm
of the original house price. For Model 0, the signs of these coefficients were consistent
with prior studies. The expected sign of the coefficient of D_Hospital was positive in
some studies while negative in others, and it was positive in this study, indicating if a
community is closer to a hospital, its price is lower. The signs of structural, locational,
and neighborhood variables of Model 1 were the same as the ones of Model 0, and the
magnitude of these variables changed little. The signs of S_Safe and S_Boring were both
negative. All of the coefficients were significant at the 1% level, except that the coefficient of
S_Safe was significant at the 5% level. The view index variables had positive and negative
signs, and their coefficients were all significant at the 1% level.

4.5. GWR

In this study, the adaptive bisquare kernel function of the GWR model was employed.
The adaptive kernel bandwidths (i.e., a fixed number of local observations) were estimated
as 95 and 168 for Models 3 and 4, respectively. The effects of perception scores on housing
prices were more localized than those of view indices.

The GWR models offer better fitting performance than the OLS models. The adjusted
R2 values for Models 3 and 4 were 72.3% and 70.1%, respectively, which were much higher
than those of the OLS. Interestingly, the adjusted R2 of Model 3 (perceptions) was higher
than that of Model 4 (view indices) for GWR, which is the opposite of the results of OLS,
whose adjusted R2 for perceptions was lower than that of the view indices. The high
adjusted R2 and low AICc values in Table 3 suggest that the GWR model had the strongest
fitting performance.
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Table 5. Regression coefficients of models.

Model Model 0 Model 1 Model 2

cons 10.5238 *** 12.000 *** 12.437 ***

Structural attributes

FAR −0.0415 *** −0.03956 *** −0.0102 ***
Age −0.0131 *** −0.01281 *** −0.0447 ***

Locational attributes

D_CBD −0.000024 *** −0.000023 *** −0.000022 ***
D_Hospital 0.000063 *** 0.000060 *** 0.000039 **

Neighborhood attributes

N_Bus 0.01123 *** 0.01094 *** 0.00979 ***
N_Metro 0.01164 *** 0.01264 *** 0.01283 ***
N_School 0.00529 *** 0.00543 *** 0.00648 ***

Subjective perception

S_Safe / −0.01226 ** (0.015) /
S_Boring / −0.01722 *** /

Objective view index

O_Sky / / −0.03284 ***
O_Tree / / −0.02427 ***
O_Building / / −0.02704 ***
O_Plant / / 0.02419 ***
O_Car / / −0.02317 ***
O_Fence / / 0.04223 ***
O_Ceiling / / −0.05011 ***

Note: Significant p-values are marked in parentheses: ** p < 0.05, *** p < 0.01.

The values of local R2 for Models 3 and 4 are shown in Figure 9. In general, for both
models, the industrial park and Xin district had greater local R2 values than the central
region of the Gusu district. The spatial pattern of the local R2 matched that of the housing
price map shown in Figure 1. In other words, areas with higher housing prices exhibited a
better fitting performance.
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The Monte Carlo test was used to evaluate the significance of the GWR-estimated
coefficients and determine whether they were spatially stationary. The Monte Carlo test
was performed 999 times with random permutations of the observations in space. The
results of the descriptive statistics and the p-values of the Monte Carlo significance test for
Models 3 and 4 are presented in Tables 6 and 7, respectively. The p-values of all coefficients
in both models were zero, suggesting that the impact of the variables on housing prices
varies spatially. Therefore, it was necessary to use GWR to model the spatial heterogeneity
of these variables.

Table 6. Summary statistics and Monte Carlo significance test results for Model 3 (perception scores)
parameter estimates.

Variable Mean STD Min Median Max p-Value

FAR −0.074 0.096 −0.432 −0.072 0.178 0 ***
Age −0.014 0.011 −0.046 −0.012 0.017 0 ***
D_CBD 0 0 0 0 0 0 ***
D_Hospital 0 0 −0.001 0 0.001 0 ***
N_Bus 0.006 0.013 −0.023 0.004 0.051 0 ***
N_Metro 0.007 0.024 −0.057 0.006 0.093 0 ***
N_School −0.002 0.023 −0.093 0.002 0.055 0 ***
S_Boring −0.005 0.038 −0.111 −0.001 0.116 0 ***
S_Safe −0.012 0.04 −0.144 −0.008 0.098 0 ***

Note: Significance value, *** p < 0.01.

The estimated coefficients of the GWR varied from place to place. The spatial distribu-
tions of the coefficients for Models 3 and 4 are shown in Figures 10 and 11, respectively.
The natural break (Jenks) classification method divides coefficients into five classes. To
distinguish between the positive and negative effects of these factors on housing prices, a
zero value was purposefully set in one of the classes to distinguish between the positive
and negative coefficient groups.
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Table 7. Summary statistics and Monte Carlo significance test results for Model 4 (view indices)
parameter estimates.

Variable Mean STD Min Median Max p-Value

FAR −0.064 0.075 −0.302 −0.062 0.118 0 ***
Age −0.013 0.009 −0.034 −0.011 0.007 0 ***
D_CBD 0 0 0 0 0 0 ***
D_Hospital 0 0 0 0 0 0 ***
N_Bus 0.006 0.009 −0.017 0.005 0.032 0 ***
N_Metro 0.007 0.015 −0.032 0.008 0.059 0 ***
N_School 0.002 0.014 −0.048 0.004 0.033 0 ***
O_Sky −0.021 0.027 −0.115 −0.019 0.035 0 ***
O_Building −0.02 0.025 −0.114 −0.017 0.03 0 ***
O_Tree −0.015 0.026 −0.105 −0.016 0.047 0 ***
O_Ceiling −0.047 0.071 −0.286 −0.035 0.287 0 ***
O_Plant 0.018 0.033 −0.057 0.019 0.107 0 ***
O_Fence 0.018 0.077 −0.247 0.012 0.311 0 ***
O_Car −0.017 0.036 −0.115 −0.022 0.067 0 ***

Note: Significance value, *** p < 0.01.
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(b) Coefficients of the safety score.

Boring is a negative and unlively perception [9], and a substantial portion of the
boring coefficients were negative in Figure 10a, indicating that the boring perception
in these communities was inversely proportional to housing prices. However, many
communities had positive boring coefficients, such as several communities in the Wuzhong
and Xiangcheng districts. This implies that an increase in boring scores may increase
the housing price. Safety is a positive perception, and several communities in the Gusu,
Xiangcheng, and Wuzhong districts had positive safety coefficients, indicating that safety
perception is proportional to housing prices. Meanwhile, the safety coefficients were
negative in certain outlying suburbs, indicating that an increasing safety score may decrease
housing prices. This may be due to the fact that these areas are in suburbs and life is not
convenient.

Figure 11a–c show similar spatial patterns for the sky, building, and tree-view index
coefficients, respectively. Some communities in the city center had positive coefficients,
whereas others in the surrounding regions had negative coefficients. The number of
communities with negative coefficients was greater than those with positive coefficients.
This indicates that increasing the sky, building, and tree indices may decrease housing
prices in most communities. The spatial distributions of the other view index coefficients
differed significantly from one another.
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5. Discussion
5.1. Effects of Subjective and Objective Measures on Housing Prices

The objective measures may generally explain more variance than the subjective
measures, according to the adjusted R2 of the OLS in Table 3. The adjusted R2 of Model 2
(39.26%) for OLS was 4.8 percentage points higher than that of Model 1 (34.46%). Overall,
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the objective measures had stronger explanatory power, and built environment factors had
a greater impact on housing prices. This is in line with a study by Qiu [13]. In addition to
the sky, tree, and building view indices having the largest proportions, the plant, car, fence,
and ceiling view indices also have a considerable impact on housing prices.

The global OLS model determines a single corresponding parameter for each variable
in each observation. By contrast, GWR is a local model that estimates the model parameters
for every observation within a local neighborhood. In Table 3, the adjusted R2 of Model 3
(72.3%) was greater than that of Model 4 (70.1%), which is an interesting contrast to the
OLS relationship. This contradicts Qiu [13] and demonstrates that for GWR, perceptual
measures can explain more variance in housing prices than view indices on the local
scale. This indicates that home buyers care more about their subjective perceptions of their
neighborhoods’ surroundings.

The GWR produces a different result than OLS, suggesting that the result of the
local model is opposite to that of the global model. This phenomenon is, in fact, the
Simpson’s paradox. It is essential to mitigate this problem by modeling spatially varying
relationships [29]. The results of the Monte Carlo test also demonstrate that the impacts of
the explanatory variables vary spatially.

Specifically, the coefficients of the boring and safety scores were both negative for
OLS. For GWR, some communities had positive coefficients for boring and safety scores,
whereas others had negative coefficients. Boring is a negative perception that usually has
a negative impact on housing prices, indicating that a boring community environment
is associated with low housing prices. Safety is a positive perception and usually has a
positive impact on housing prices. This indicates that people are prepared to pay premiums
for safe communities.

However, some communities had positive coefficients for boring perceptions. This
appears counterintuitive. One reason is that older residential communities usually have
stores on the first floor and are cheaper, whereas newer residential communities do not have
stores on the first floor and are usually more expensive than older communities. Owing to
stores and shoppers, older and cheaper residential communities have lower boring scores.
By contrast, newer residential communities had higher boring scores. Therefore, the boring
coefficients were positive for some communities.

A potential explanation for the negative safety coefficients was provided. According to
Figure 8b, the car and sidewalk view indices (53 and 48) had the highest feature importance
in predicting the safety perception. More cars can bring not only safety but also more
air pollution and noise. This has a negative effect on housing prices. This justification is
comparable to the effect of metro stations on housing prices [51]. The closer a community
is to a metro station, the more convenient it is to travel. Thus, property prices property will
increase. However, if they are too close, housing prices may be lowered due to noise and
other considerations.

In addition, the effect of the tree view index on housing prices was negative for the
OLS. This is counterintuitive and inconsistent with Ye’s work [8]. Figure 11c shows that the
tree view index had both positive and negative effects. The positive effects were mainly
concentrated in the city center. The negative effects were in the suburbs, and a possible
reason was that trees around new residential communities in the suburbs were not tall or
large because of their relatively young age, resulting in a low tree view index. Thus, new
communities have high housing prices and a low tree view index.

It is critical to pay attention to both the model and the selected variables when analyz-
ing housing prices because the result of OLS is the opposite of that of GWR. In particular,
the Simpson’s paradox may result from utilizing global models, such as OLS. Thus, OLS
should be used with caution when attempting to explain the influence of various variables
on housing prices. It is indispensable to use a local model, such as GWR, to analyze the
spatially varying effects of variables.

The outcomes we obtained differed from those of Kang’s study [9]. Kang first em-
ployed the principal component analysis technique and then used OLS to analyze the effects
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of various factors on housing prices. The principal components were linear combinations of
individual perceptions. Kang analyzed only the principal components’ impacts on housing
prices rather than individual perceptions. In addition, although Kang applied GWR, Kang
did not demonstrate or analyze the spatially varying coefficients.

5.2. Pros and Cons of Subjective and Objective Measures

The GWR discloses that subjective perceptual scores can explain more variance in
housing prices than objective view indices. This highlights the importance of “sense of
place” and humanistic insights in evaluating the effects of various features on housing
prices [9]. Perceptual scores measure how people perceive a place psychologically and
are related to the socioeconomic environment, such as land use [52], poverty status [53],
and crime rates [54]. Human perceptions of places depict a complete picture. Table 3
shows that the 12 most important view indices could only explain a small proportion
of the perceptual variance (17–54%). The boring and safety perceptions had the two
lowest R2 values (17% and 24%, respectively), and the two perceptions were selected using
the stepwise regression model to fit housing prices. This reflects the fact that the two
perceptions contain more sensory information than view indices. The multicollinearity
issue with subjective measurements makes it challenging to incorporate all of them into
OLS, which is one of their drawbacks.

Objective view indices can supplement subjective perceptual scores even if they
cannot fully characterize a place, such as subjective measures. The view indices are distinct,
unambiguous, easy to measure, and have a low correlation.

5.3. Implications for Urban Planning

This research integrates and compares the effects of subjective perceptions and ob-
jective view indices on housing prices and has broad and practical applications in urban
planning. First, housing prices were significantly affected by subjective perceptions. Gov-
ernments and policymakers should pay attention not only to the built environment, but
also to perceptions of the micro-scale street environment around residential districts. Side-
walks and fences, which may affect residents’ perceptions of safety, should receive more
attention. Currently, only the green ratio and road construction have received attention
in other cities. Perception indicators should be carefully selected because of the multi-
collinearity problem. Second, a street environmental fee can be imposed to compensate for
public funds invested in improving streetscapes [8]. This is because real estate developers
profit financially from the surrounding street environment, whereas cities create, invest
in, and maintain streetscapes. Tax amounts can be determined using both subjective and
objective indices. Third, boring and safety perceptions were selected to represent nega-
tive and positive perceptions, respectively. This study can serve as a reference for future
research. These subjective perceptions can be used to model economics and other urban
plans outside of settlement assessments. For example, they can provide new measures for
street design guidelines [38]. Urban designers and practitioners can examine the social,
psychological, and emotional meanings of the street environment and better guide various
applications, such as lively and safe neighborhood design, sustainable city planning, and
urban micro-renovation.

5.4. Limitations and Potential Improvements

This study has several limitations that should be addressed in future studies. First,
human perception may have been biased. The deep learning model used to appraise the
SVIs of Suzhou was trained using SVIs collected in Wuhan City. Although both cities
are located in China, each city has a unique street environment [55]. These two datasets
have distinct data distributions. To assess the performance of the model in future studies,
Suzhou’s sample SVIs may need to be collected and annotated by humans.

Second, human perceptions were predicted with a deep learning model. Experiencing
a place does not involve the observation of specific objects. In addition to the visual
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elements in SVIs, other elements are related to human perceptions. Quercia pointed out
that the history, culture, interactions, and experiences of a place cannot be easily captured
by images [56]. Future research could expand the incorporation of additional datasets, such
as social media datasets.

Third, previous studies have shown that the spatial scale impacts the hedonic price
model’s results. The scale of the research object has a modifiable areal unit problem [57]. A
fine-scale community was selected as the study object. More coarse-level regions (such as
zip code regions) can be applied in other research to conduct experiments [2].

6. Conclusions

Using SVIs, this study analyzed the effects of subjective perceptions and objective
view indices on housing prices. Subjective perceptions and objective view indices were
extracted from the SVIs using deep-learning models. The effects of the subjective and
objective measures were analyzed and compared using OLS and GWR. The global model
OLS explored the overall impact of these measures on housing prices. GWR was employed
to reveal the spatial variation in these factors from a local perspective, as opposed to the
global approach that OLS uses. The main findings are summarized as follows:

First, for OLS, the overall objective measures explained more variance than the subjec-
tive measures. This result is consistent with that reported by Qiu et al. [13]. This suggests
that the built environment factors have a greater impact on housing prices.

Second, compared to the view indices, the perceptual scores for the GWR exhibited
stronger explanatory power. This indicates that home buyers care more about their sub-
jective perceptions of their neighborhoods’ surroundings. The results of the local GWR
model were opposite to those of the global OLS model. The GWR result highlighted the
importance of “sense of place” and humanistic insights in evaluating the effects of various
indicators on housing prices. Furthermore, human perceptions of a place can provide a
more complete picture.

Third, the results of the Monte Carlo test showed that the effects of the explanatory
variables varied spatially and were statistically significant. However, this demonstrates the
value of using GWR.

These results have important implications for governments and urban planners. They
should focus on the perceptions of the microscale street environment around residential
areas, as well as the built environment. Urban designers and practitioners can examine the
social, psychological, and emotional meanings of street environments and guide various
applications.
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